On the Brill-Noether theory of curves in a weighted projective plane

نویسنده

  • E. Ballico
چکیده

We study the gonality and the existence of low degree pencils on curves with a model on a weighted projective plane, when their singularities are only ordinary nodes or ordinary cusps and they are general in the weighted projective plane. M.S.C. 2010: 14H51, 14J26.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformations of Covers, Brill-noether Theory, and Wild Ramification

In this paper, we give a simple description of the deformations of a map between two smooth curves with partially prescribed branching, in the cases that both curves are fixed, and that the source is allowed to vary. Both descriptions work equally well in the tame or wild case. We then apply this result to obtain a positive-characteristic Brill-Noether-type result for ramified maps from general...

متن کامل

Algebraic and combinatorial Brill-Noether theory

The interplay between algebro-geometric and combinatorial Brill-Noether theory is studied. The Brill-Noether locus W r d (Γ) of a genus-g (non-metric) graph Γ is shown to be non-empty if the BrillNoether number ρd(g) is non-negative, as a consequence of the analogous fact for smooth projective curves. Similarly, the existence of a graph Γ for which W r d (Γ) is empty implies the emptiness of W ...

متن کامل

Brill-noether Theory for Curves of a Fixed Gonality

We prove a generalization of the Brill–Noether theorem for the variety of special divisors W r d (C) on a general curve C of prescribed gonality. The main result calculates the dimension of the largest component of W r d (C). We build on previous work of Pflueger, who used an analysis of the tropical divisor theory on special chains of cycles to give upper bounds on the dimensions of Brill–Noet...

متن کامل

On the Cohomology of Brill-noether Loci over Quot Schemes

Let C be a smooth projective irreducible curve over an algebraic closed field k of characteristic 0. We consider Brill-Noether loci over the moduli space of morphisms from C to a Grassmannian G(m, n) of m−planes in k and the corresponding Quot schemes of quotients of a trivial vector bundle on C compactifying the spaces of morphisms. We study in detail the case in which m = 2, n = 4. We prove r...

متن کامل

Vector Bundles with Sections

Classical Brill-Noether theory studies, for given g, r, d, the space of line bundles of degree d with r + 1 global sections on a curve of genus g. After reviewing the main results in this theory, and the role of degeneration techniques in proving them, we will discuss the situation for higher-rank vector bundles, where even the most basic questions remain wide open. Focusing on the case of rank...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016